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Key Questions

• Should Every Model be Validated?
• How much validation is needed?
• What is the difference between validation and curve 

fitting?
• What is validation?
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VV&A

• Verification
– Is the programming correct
– Did I build the thing right?
– The process of determining that a model implementation and its associated data 

accurately represent the developer's conceptual description and specifications
• Note – in the management literature verification is used to mean 

validation!!!
• Validation

– Does the model match reality at a level sufficient for the model’s purpose
– Did I build the right thing?
– The process of determining the degree to which a model and its associated data 

provide an accurate representation of the real world from the perspective of the 
intended uses of the model

• Accreditation
– What systems can this model be used on and in what context
– Should it be used?
– The official certification that a model, simulation, or federation of models and 

simulations and its associated data is acceptable for use for a specific purpose

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 3

Verification

• Two Meanings depending on literature

• Engineering
– Accuracy of code

• Economics and Management and Operations 
Management
– Validation and verification used interchangeably
– Verification used in the “philosophical” sense of verified against 

the real world
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Documentation is Critical

• Note – for the DOD requires specific types of documentation -
http://dvdt.nmso.navy.mil/

• VV&A is performed 
– RISK: when the potential risk of making an incorrect decision based on 

a simulation 
– COST: outweighs the time and cost of performing VV&A to ensure that 

simulation can produce results that are sufficiently accurate and reliable

• CAVEAT – ALL of VV&A is relative to the “purpose” of the model

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 5

Specification vs Validation

• Specification:
– Static
– Architecture of software and structure of code
– Verifications done through formal methods, which are 

insufficient for multi-agent social-network and other 
simulations (e.g., lacking emergent properties)

– Can be formalized using UML or OWL 
• Validation:

– Dynamic
– Simulation outputs, inputs, and happenings
– Empirical data and knowledge
– Inference based

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 6
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Credibility – Should it be trusted?

Orthogonal Concept --- Credibility 
– depends on correctness

• the level of confidence that its data and algorithms are sound and 
robust and properly implemented, 

• the accuracy of the simulation results will not substantially and 
unexpectedly deviate from the expected degree of accuracy

– Depends on usability
• the training and experience of those who operate it,
• the quality and appropriateness of the data used in its application
• the configuration control procedures applied to it  
• The ease of entering and extracting data

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 7

The Theory

Data Virtual
Data

Controls
Virtual

Controls

Idea

Experiment Virtual Experiment

Assumptions:
Experiment is repeatable
Results can be replicated
Data is complete
Controls are stable and 
well defined

Assumptions:
experiment assumptions +
Code is accurate
All factors have been 
modeled
Standard statistical tests 
can be used
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BUT: With Simulations of Complex 
Socio-Technical Systems

• Validation Assumptions do not hold !!
• Experiment is repeatable

– Lab experiments with people are only partially repeatable
– Field studies can not be repeated

• Results can be replicated
– Results may not be replicated precisely 

• Data is complete
– For field data not all information is available at same granularity

• Controls are stable and well defined
– Some “controls” may not be obvious

• Code is accurate
– YES!

• All factors have been modeled
– No – only the critical subset

• Standard statistical tests can be used
– Maybe not  - non parametric as distribution not known

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 9

Consequently …
• New Approach
• Experiment is repeatable

– Trade repeatability for large quantities of data
• Results can be replicated

– Treat results as a probability distribution
• Data is complete

– Data fusion and validation by parts
• Controls are stable and well defined

– Search for critical or dominant factors 
– Discuss boundary conditions

• Code is accurate
– YES!

• All factors have been modeled
– No – only the critical subset
– Decision support not decision making

• Standard statistical tests can be used
– Many diverse approaches
– Forecast not prediction

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 10
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Definitions

• Validation – a set of techniques for determining 
whether or not a model is valid.   Used for both internal 
validity, matching with other models, and matching with 
non-computational data.

Special forms of Validation
• Calibration – a set of techniques for tuning a model to fit 

detailed non-computational data.
• Training – procedures for supplying data and feedback 

to computational models that can learn.
• Docking – a set of techniques for determining the level 

of comparability or equivalence of two models.

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 11

Traditional Validation Approaches

• Requirements engineering and formal methods
• Evolutionary verification and validation
• Docking, including against math and system dynamics 

models
• Statistical methods alone
• Expert systems (not usually done because simulations 

are usually numerical)
• Domain experts (human experts/subject matter experts)
• Response Surface Methodology (validation against 

empirical data)
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Methods and Levels for Validating a 
Computational Model

• Validation techniques vary in 
– Method
– Level
– Intensity
– Purpose

• Similar approaches can be used for
– Any form of validation
– Calibration
– Training
– Docking

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 13

Validation Levels

• Internal validity aka Verification - error free code
• Parameter validity - parameters match
• Process validity - processes fits
• Face validity - right type of things
• Pattern validity - pattern matches observed

– Stylized Facts
– Statistical Patterns

• Value validity - values match
• Theoretical validity - theory fits

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU2016 14
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Validation is Difficult

• Models are a subset of reality; model assumptions may 
not match the reality

• Cognitive bias of human modelers/validators
• Validation is knowledge intensive
• Complexity and stochasticity of social agents 
• Agent history (non-Markovian), starting conditions, etc.
• Validation consumes a significant amount of time and 

resources
• Quality and quantity of empirical data vary
• Least developed area of Multi-Agent Social-Network 

computational modeling

October 2016 15

A Caveat

• Computational modeling is sufficiently complex that a 
single individual in a single research period (e.G. 6 
months to a year) can not build, analyze, and validate a 
computational model.

• Most models take multi-person years to build and 
analyze.

• Data collection and analysis from a virtual experiment 
often takes as long as a human experiment and requires 
statistical training comparable to that required for 
human experiments.

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU2016 16
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Validation In Parts

• Input
– Match with real world
– Actual real data

• Internal Processes
– Algorithms derived from real data 

• Statistical - ERGM Model or model created by machine learning
• Mathematical – model describing experiment data
• Logical description

• Output
– Predictive forecasting

• WARNING WARNING WARNING – Don’t over fit

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 17

Face Validity

• Is the model a reasonable simplification of reality?
• Techniques to increase face validity:

– Set parameters based on real data
– Model a specific organizational or inter-organizational process
– Show that others have made similar assumptions
– Discuss model limits and how left out factors may or may not 

affect results
– Don't over-claim model applicability

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 18
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Illustration:  Model & Reality

Simulated Annealing                   Organizational Strategic Adaptation

system                                           organization’s CEO or central unit
state                                               organizational design
current state                                  current organizational design
temperature                                   risk aversion
accepting a cost                            taking a risk

increasing move
high temperature means              liability of newness

accepting many cost
increasing moves

move set                                         re-design strategies
heuristic optimization process    satisficing  & BR process
minimize cost                                 maximize performance
cooling schedule                           approach to becoming risk averse
proposed state                               proposed new design
evaluation of proposed state       limited lookahead, anticipation of future
state evaluation                             observed performance

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 19

(Social) Turing Test

• The model does the task it seeks to explain.
1. substitutability.
2. Turing test.
3. Social Turing test.

• Construct a collection of social agents according to the 
hypotheses and put them in a social situation, as 
defined by the hypotheses.  Then recognizably social 
behavior should result.

• Aspects not specified by the hypotheses, of which there 
will be many, can be determined at will.

• The behavior of the system can vary widely with such 
specification, but it should remain recognizably social.

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 20
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Stylized Facts

• Simple techniques for seeing of model  results are 
reasonable.

• Techniques to demonstrate validity:
– Are there stereotypical facts about the problem that this model 

generates; E.G.,  Models of organizational evolution should 
predict liability of newness.

– Are there behaviors that any model of this ilk should generate; 
E.G., All diffusion models should generate an s-shaped adoption 
curve,  all neural networks should take a long time to train.

• These are non-surprising findings but if model can't 
generate them then it is not valid.

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 21

Empirical Validation
(remember in some areas this is 

called verification)

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 22
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Validation to see if model is 
Credible vis Reality

• Involves testing a computational model's predictions 
given a set of non-computational data

• Have available the results of a virtual experiment
• Have available non-computational results

– May be archival, survey, experimental
• Is sometimes done on uncalibrated models
• Demonstrates that model's predictions match non-

computational data

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 23

Types of Validation

• Level of validation:
– Pattern - same trends are observed
– Value - same values are observed

• For multi-agent models:
– Group or organizational level - matches overall behavior of 

collection of agents
– Agent level - matches specific entities behavior

• For stochastic models:
– Point - on average behavior is the same
– Distribution - distribution of results is the same
– Detail match - one entire run is the same

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 24
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Data for Validation

• Type:  anything 
– May be archival, survey, experimental, subject matter expert 

(though least accepted statistically)

• Quantity:  high
– Sufficient for statistical analysis

• Level of detail:  low
– Do not need the same level of process data that  is needed for 

calibration

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 25

Calibration
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Calibration

• Calibration involves fitting a computational model to a 
set of data
– May require programming (adding modules or new processes)
– May require parameter setting

• Have available detailed data on one or more cases
• Calibration is often the only validation step carried out 

for emulations
• Calibration demonstrates that model can match non-

computational data

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 27

Calibration Cont.

detailed data on one or 
two cases

maybe ethnographic

uncalibrated computational 
model

check predictions

check processes

check parameters

alter processes

alter parameters

predictions

trace
is match

adequate ?

no

yes

calibrated model

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 28
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Locating Cases

• Ideally:
– Use a set of cases that span the key categories you are 

concerned with
• Next best:

– Choose 2-4 cases that represent typical behavior and 1 or 2 that 
represent atypical behavior

• In practice:
– Most intellective models are not calibrated
– Lucky to have even one case with sufficient detail
– Often detailed case is a matter of opportunity

• Sources:
– Archival data, ethnographies, participant observation, subject 

matter expert (SME)
Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 29

What if using SME Data:
Multi-expert Problem

• What if experts or cases disagree?
• Typical solution:  average the two cases
• Alternative:  put in both cases as options with a certain 

probability of occurring
– Probability:  
– Equally weighted
– Weight can reflect degree of agreement

NOTE:  For rule based models detailed cases may 
be the  opinions of experts

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 30
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Training

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 31

Model Training

• Use this when:
– You have models that learn
– You want to test the "goodness" of what they have learned

• Approach
– Divide non-computational data into two sets
– Train the model on first set
– Generate model predictions to second set
– Test model against second set

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 32
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Impact of Training

Performance

Trials

A B C
Training on set 1 new data Performance on set 2

trial 
window

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 33

Matched Analysis
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<Your Name>

18

Corp (A predecessor to 
ORGAHEAD)

CHARACTERISTICS 
OF AN  AIRCRAFT

FRIENDLY 

NEUTRAL 

HOSTILE

TRUE STATE  OF  
THE  AIRCRAFT

DEFINING 
PROCESS

FEEDBACK TO  
ORGANIZATION

OBSERVED BY  
ORGANIZATION

UNKNOWN  TO  
ORGANIZATION

?

F1--SPEED 
F2--DIRECTION 
F3--RANGE 
F4--ALTITUTE 
F5--ANGLE 
F6--CORRIDOR STATUS 
F7--IDENTIFICATION 
F8--SIZE 
F9--RADAR EMISSION  

TYPE

EARTH

RADAR DETECTION SPACE

100 FT

1.2 *   ALTITTUDE + RANGE

T1T2Tn

Task

Blocked

Analysts Task

F1

F2

F3

F4

F5

F6

F7

F8

F9

Analysts Task

Distributed

F1

F2

F3

F4

F5

F6

F7

F8

F9

Final Decision = Majority Vote

Team

Analyst

Task

One Tier Hierarchy

Analyst
Top Level Final Decision

Task

Used a subset that matched 
human experiment

October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 35

Matched Analysis

Simulation Corporate Data

Vary organizational design

Vary task environment

Measure performance as
accuracy

Monte Carlo 19683 cases

Estimate of performance on
average

Vary organizational design

Vary task environment

Measure performance as
actual/potential severity

General performance

69 cases, technological
disasters

Matched Set
Predict performance
What if analysis:  if organization did/did not shift what

would be impact

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 36
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Archival Match

Prediction
Training Performance in 

General
Performance 
During Crisis

Experiential 2.10(21,0.18) 2.38(21,0.11)
Operational 1.83(48,0.10) 1.42(48,0.07)

Observation
Training

Experiential 1.86(21,0.17) 2.38(21,0.13)
Operational 1.83(48,0.09) 1.46(48,0.08)

Note: Number of cases and standard errors are in parentheses

Performance in 
General

Performance 
During Crisis

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 37

Hierarchies More Robust

Task Complexity

or Turnover Level

Final % Correct

100%

50%
low high

Team

Hierarchy

Team more
affected

Hierarchy more
affected

Performance
so low

no one is affected

Slope of curves, intercepts, and hence 
crossover point depends on level of turnover  
among analysts, experience of new personnel, 
task complexity, and type of task.
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TEAM       HIERARCHY       SEGREG      NON-SEG
exp    sop      exp   sop          exp   sop     exp  sop

Simulated         3.00  1.50       2.35  1.41         2.30  1.40     2.45  1.60    

Human              3.00  1.50       2.35  1.46         2.10  1.42    2.64   1.80
(1)       (4)           (20)     (44)               (10)     (43)         (11)       (5)

Reality: Teams Better

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 39

Micro –versus- Macro Validation 
Conundrum
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Illustration:  CORP & Human 
Experiment

Organizational
Designs

Task

Performance
Operating
Conditions

Agent Models

Artificial

4. Humans

1. F-ELM

3. SOP
2. M-ELM

Agents
Organizational Structure

1. Team
2. Hierarchy

Resource Access Structure
1. Blocked
2. Distributed

1. Feedback
2. No Feedback

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 41

Human Experiment

Two stages -

Stage 1) Analysts / Operators Decisions based on raw data

Stage 2) Commander/mid-level Decisions based on 
analyst's decisions

Each analyst sees 120 problems of form

l,m,h on 3 characteristics

speed is high, altitude is high, radar type is weapons 
emissions

set 1)  30 problems with characteristics a,b,c with feedback

set 2) 30 problems with characteristics a,b,c without feedback

set 3) 30 problems with characteristics d,e,f with feedback

set 4) 30 problems with characteristics d,e,f without feedback 
and with equipment failures

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 42
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Details of Experiment

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 43

Verification by Pattern

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Blocked Team

with 
feedback

without 
feedback

Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Blocked Hierarchy

with 
feedback

without 
feedback

Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distributed Team

with 
feedback

without 
feedback

Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distributed Hierarchy

with 
feedback

without 
feedback

Accuracy

ELM — Full Training
ELM — Minimal Training
SOP — Minimal Training
Human 
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Detailed Pattern

5 1015202530354045505560
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Order

Accuracy
F-ELM

5 1015202530354045505560
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Order

Accuracy
Human

Order
5 1015202530354045505560

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0Accuracy

M-ELM

5 1015202530354045505560
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Order

Accuracy
SOP
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Comparison by Value

Organization’s Accuracy by Agent Model 
and Organizational Design     

Agent 
Training            Team                    Hierarchy 

Blocked Distributed Blocked Distributed

ELM full          88.3%     85.0%      45.0%     50.0%
ELM min         78.3%    71.7%       40.0%     36.7%
SOP full/min   81.7%    85.0%       81.7%     85.0%
Human            50.0%    56.7%       46.7%     55.0%
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Harmonization
Evidence for Gain from Complexity

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 47

Harmonization

• Assessment of theoretical adequacy by comparison with 
a cross-validated linear model

• Harmonization involves contrasting the predictions of a 
computational model and a linear model
– Requires enough cases that you have two samples large enough 

for statistical analysis
– Requires that there is a reasonable linear model 

• Harmonization can locate areas of the model where the 
embodied theory is inadequate

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 48
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Harmonizing

Uncalibrated 
Computational 
Model

Calibrated 
Computational 
Model

Calibration
Verification

Harmonizing

Limited 
Human  
Data (sample 1)

Regression 
Equation

Linear Model 

Linear Model 
Predictions

Computational 
Predictions  
(for sample 1 & 2)

Computational 
Predictions 
(for sample 1) 

Harmonization 
Analysis

Cross-Validation

Limited 
Human  
Data (sample 2)

MATCH

Detailed 
Human 
Data

Computational 
Data

COMPARE

COMPARE
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Locating the Linear Model

• Many sources for such a model:

– Linear model of inputs
– Easily collected data that might be used by management to 

make the same prediction the computational model is making
– Model presented in the literature

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 50
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Illustration & Harmonization

COMIT - impact of technology on task performance
Human data on a bicycle repair task using various technology (including vide an
non-video)
Focus is on prediction frequency and order of communication actions

Photo Credit: David J. Kaplan

Worker Helper

Shared Manual and View

•Coded audio soundtracks
•Took half of subjects and created 
linear model and verified COMIT
•Linear model based on data 
accessible by managers
•Generated predictions for remaining 
subjects for COMIT and linear model
•Calculated R2 across subjects
•Data - 4 people, COMIT 2 people

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 51

COMIT Results

Action                            Linear Model     COMIT        Correlation 

Helper Acknowledgment  0.230              0.653             0.8083

Helper Request                  0.498              0.141             0.7488

Helper Other                      0.118              0.323            -0.3306

Worker Other                     0.307              0.368             0.6886

Worker Question               0.215              0.011             0.4442

Worker Description           0.086              0.182             0.8148

Worker Acknowledgment 0.044              0.473             0.2986

Helper Help                        0.310              0.130             0.8190
positive correlation means both 
models doing well/poorly in same 
areas, negative correlation means 
models tend to have opposite 
predictions
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Computational Predictions
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What Happens When Models are 
“HUGE”

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 53

BioWar

Kathleen M. Carley
kathleen.carley@cs.cmu.edu
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BioWar
• City-level Multi-Agent Dynamic-Social-Network model of population 

response to loss-of-life events – bio-warfare, epidemiological, 
chemical

• High fidelity
• US Centric
• 5 cities/ 6 cities

– Pittsburgh, San Diego, San Francisco, Washington DC, 
Norfolk/Hampton Roads

• 62 diseases
– Weaponized – Smallpox, anthrax,
– Background – influenza
– Epidemic – pandemic influenza, SARS

• Sub-Model for military bases for use in planning, training and 
assessment of force vulnerability

• GenCity: Network generation: Census based imputation tool for 
realistic network generation that is context sensitive

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 55

The Model …
• Input

– Military Bases
– Census data – social, economic, occupation
– School district data
– Worksite and entertainment locations & size
– Hospitals and clinics locations & size
– Social Network characteristics
– IT communication procedures
– Wind characteristics
– Spatial layout
– Disease models (symptom level)
– OTC and Prescription drug info
– Attack or event
– Interventions

• Illustrative Output
– OTC & Prescription drug sales
– Insurance claim reports (Dr. visits)
– Emergency room reports
– Absenteeism (school and work)
– Infected, Contagious, Mortality

Agents move in networks which influence 
what they do, where, with whom, and 

what they know, what diseases they get, 
when, how they respond to them, etc.

Major difference in network and disease 
effects based on race, gender and age.

Vast quantities of data
Real and Virtual

Format of virtual to match real
But real data is …

Incomplete
Diverse sources

Inconsistent
Different levels of granularity
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Model Objectives
• Automated tools for:

– Evaluating response policies, data efficacy, attack severity, and detection tools 
related to weaponized biological attacks in the presence of background diseases 
such as flu

– Generating high fidelity virtual data for testing detection and fusion algorithms, 
and exploring potential impact of never before seen events

• Systematically reason about:
– The rate and spread of disease at the symptom level with high degree of realism
– Early presentation of diseases as seen in secondary data streams
– Potential response scenarios, such as inoculation
– Policy design for potential problems

• Push the frontier of high dimensionality social simulation models (fidelity, 
precision, speed, comprehensiveness, etc.)
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Illustrative Respiratory and GI Diseases 
Modeled

Disease ICD9Code ICD9Name
ACUTE_NASOPHARYNGITIS 460 Acute nasopharyngitis [common cold]
INFLUENZA 487.1 FLU W RESP MANIFEST NEC
INFLUENZA_PNEUMONIA 480.2 PARINFLUENZA VIRAL PNEUM
SEVERE_ACUTE_RESPIRATORY_SYNDROME 480.9 Viral pneumonia, unspecified
BACTERIAL_PHARYNGITIS_ACUTE_NON_STREPTOCOCCAL_NON_GONOC462 ACUTE PHARYNGITIS
GRAM_NEGATIVE_PNEUMONIA_NON_KLEBSIELLA 482.1 PSEUDOMONAL PNEUMONIA
MYCOPLASMA_PNEUMONIA 31 PULMONARY MYCOBACTERIA
PNEUMOCOCCAL_PNEUMONIA 481 PNEUMOCOCCAL PNEUMONIA
PULMONARY_LEGIONELLOSIS 482.89 PNEUMONIA OTH SPCF BACT
STAPHYLOCOCCAL_PNEUMONIA 482.4 STAPHYLOCOCCAL PNEUMONIA
STREPTOCOCCAL_PHARYNGITIS_ACUTE 34 STREP SORE THROAT
STREPTOCOCCUS_PYOGENES_PNEUMONIA 482.3 STREPTOCOCCAL PNEUMONIA*
TUBERCULOSIS_CHRONIC_PULMONARY 11.9 PULMONARY TB NOS*
TUBERCULOSIS_DISSEMINATED 18.9 MILIARY TUBERCULOSIS NOS*
VARICELLA_PNEUMONIA 52.1 VARICELLA PNEUMONITIS
VIRAL_PHARYNGITIS_ACUTE_NON_HERPETIC 79.3 RHINOVIRUS INFECT NOS
BRONCHIAL_ASTHMA 493.1 INT ASTHMA W/O STAT ASTH
BRONCHITIS_CHRONIC_SIMPLE 491 SIMPLE CHR BRONCHITIS
PULMONARY_EMPHYSEMA 492 Emphysema, NOS
PLAGUE_PNEUMONIA 20.2 SEPTICEMIC PLAGUE
ANTHRAX_INHALATIONAL 22.1 Respiratory anthrax

Gastro-intestinal:

STAPHYLOCOCCAL_GASTROENTERITIS_FOOD_POISONING 8.41 STAPHYLOCOCC ENTERITIS
BOTULISM 5.1 BOTULISM
CAMPYLOBACTER_ENTERITIS 8.43 Intestinal infection due to campylobacter
GIARDIASIS_INTESTINAL 7.1 Infection by Giardia lamblia
SALMONELLA_ENTEROCOLITIS_NON_TYPHI 3 SALMONELLA ENTERITIS
VIRAL_GASTROENTERITIS 8.8 VIRAL ENTERITIS NOS
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Contagious Diseases
• Modeled as either attacks or outbreaks

Characteristic Influenza Avian Flu
Start tick 402 402
End tick 940 940
Scale 200 20
Number of locations 1 1
Number of strains 2 1
Low baserate .0001, .0003 .0001
High baserate .0004, .0008 .0012
Mean baserate .000496, 

.000496
.00045

Low transmisivity .02, .03 .01
High transmisivity .03, .06 .08
Mean transmisivity .033, .033 .063

The expert’s don’t agree
Do sensitivity analyses
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Symptom-based Behavior
• People who contract an anthrax infection and display fevers/chills may 

consider their symptoms to stem from influenza/cold, and not significantly 
alter their behavior. However, if they began having shortness of breath, 
chest pains, or other symptoms suggestive of a serious problem, they 
would likely stay home from work, go to doctor, or go to an emergency 
room. 

• A set of symptom severity thresholds guides an agent's decision to visit a 
medical facility.  The thresholds are limits of the sum of the severities of 
observable symptoms over all diseases infecting an agent, signifying a 
behavior change:
– Low severity - no effect
– Mild severity - go to the pharmacy
– High severity - go to the doctor
– Extreme severity - go to the emergency department

• If alerted, individuals will lower their threshold to seek more advanced care. 

High flexibility
Many behavioral sub-models

Facilitates modeling the disease that has never been seen
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Projected Mortality per City
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Illustrative Over Time Projection

Influenza Infections  - Norfolk
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Interventions

• Quarantine
– Fraction of infected quarantined - .25, .5, .75, 1
– “reduced contact”  - 90% reduction
– Length – 3 7 28 days
– When – .05% infected, 1% infected, 2% infected

• School Closures
– Historic evidence that even when schools close, children are in 

contact
– “another Saturday”
– Length – 3 7 28 days
– When – .05% infected, 1% infected, 2% infected

• Vaccinations
– May not be 100% effective - .25, .5, .75
– May not be 100% distributed - .25, .5, .75
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Impact of Quarantine
Effects of Quarantine
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Effects of School Closure
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Effects of Vaccination
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Validated Features

• Anthrax attack & disease model (“docking” or 
computational model alignment with IPF, Incubation-
Prodromal-Fulminant – a revised SIR -- Model)

• Smallpox attack & disease model, docking with SIR
• School absence
• Work absence
• Doctor visit
• ER visit
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Validation over Time (C5=last “Challenge”, 
C1..4=previous “Challenges”)

Type C1 C2 C3 C4 C5
Docking: Comparison against another model

Generic Pattern:  Showing pattern for each generated data stream matches observed 
patterns

Characteristic Matching:  Showing for each generated output data stream that it has correct 
seasonal or daily pattern

Relative Timing of Peaks:  Showing time between peaks for dif. data streams matches 
observed dif.

Empirical Pattern:  Showing pattern for each generated data stream matches empirical 
pattern – best for input streams

Within Bounds: Showing for each generated output data stream that the mean of simulated 
stream falls within min/max of that stream for real data

First moments: Showing for each generated output data stream that mean is not 
statistically different than real data – yearly, monthly or daily
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Verification & Validation
• Internal Tuning

– Existing data sets to parameterize
• Reporting delays
• Disease profiles
• Agent social networks
• Age, race, gender, economic 

differences on behavior and 
susceptibility

• Variation in behavior by time of 
day, day of week, month, season

• Usage of IT
– Sources

• Behavioral surveys
• Nursing studies
• CDC reports
• Communication studies
• OTC purchases

– City profiling
• Census data
• School district
• Maps

• Validation – emergent behavior compared to 
real data

• Death reports
– General behavior

• Disease replication for historic 
cases

• Pharmacy purchases
• Cold shelf and influenza spike

– Influenza
• Grade School Absenteeism
• ER reports
• OTC purchases 

– Level
• General pattern
• Mean, std
• Variation in disease reports by 

day of week, month, season, local
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What Data Streams is Validation 
Done On

Data Stream C2 C3
Work absenteeism Yes Yes

School absenteeism No Yes

ER visits Yes Yes

Doctor visits Yes Yes
OTC drug purchase No Yes

Sentinel trace No No

Network distribution No Yes

mean Std.
Dev.

MonthliesDailies

Number of 
data 

streams
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What validation or tuning has 
been done

• Work absenteeism within the lower & higher empirical 
bounds

• School absenteeism within the lower & higher empirical 
bounds

• Doctor visits within the lower & higher empirical bounds
• ER visits within the lower & higher empirical bounds
• Drug sales per group is near the empirical mean
• Face validation of a sentinel population trace
• Automated output check
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Sources of Data for Validation

• NCES Indicator 17 & Indicator 42-1, for calculating 
school absenteeism

• CDC Advance Data, from Vital and Health Statistics, no. 
326, 2002, for calculating ER visits

• CDC Advance Data, from Vital and Health Statistics, no. 
328, 2002, for calculating doctor visits

• 1997 US Employee Absences by Industry Ranked 
(http://publicpurpose.com/lm-97absr.htm) for 
determining work absenteeism

• OTC Sales by Category from AC Nielsen 
(http://www.chpa-
info.org/statistics/otc_sales_by_category.asp) and PSC’s 
FRED data for pharmacy OTC drug sales
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Empirical School Absenteeism 
Bounds

• Data from NCES Indicator 17 & Indicator 42-1
• NCES Indicator 42-1 gives total absenteeism rate of 4.9% for 8th

graders in urban fringe/large town
• NCES Indicator 17 gives the absenteeism reasons of illness of 

53.1%, skipping 9.0%, others 37.9%.
• For 10th graders, the corresponding total absenteeism rate is 6.2%, 

absenteeism due to illness of 45.4%, skipping 15.6%, others 39.0%
• For 12th graders, the corresponding total absenteeism rate is 8.6%, 

portion of it due to illness is 34.2%, skipping 26.1%, others 39.7%
• As we don’t have reasons other than illness or skipping in C3, the 

lower bound for all schools is 3.04%, with the upper bound of 
5.18% absenteeism rate
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School Absenteeism

City, percent of 
simulated 
population

Empirical 
lower bound

Empirical 
higher 
bound

No Attack 
(mean)

Anthrax
(mean)

Smallpox 
(mean)

Norfolk, 20% 3.04% 5.18% 3.45% 3.75% 3.55%

Pittsburgh, 20% 3.04% 5.18% 3.52% 4.67% 4.46%

San Diego, 20% 3.04% 5.18% 3.78% 3.81% 5.57%

Veridian Norfolk, 
20%

3.04% 5.18% 3.73% 4.05% 4.31%
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Empirical Work Absenteeism 
Bound

• Data from the 1997 US Employee Absences by Industry Ranked
• As we don’t yet have the specifics of workplace types in C3, we take 

the lower bound to be the lowest absence rate of any industry type, 
the higher bound to be the highest.

• So, from the data, we have the lower bound of 2.3% and the higher 
bound of 4.7% absenteeism rate.
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Work Absenteeism

City, percent of 
simulated 
population

Empirical 
lower 
bound

Empirical 
higher 
bound

No Attack 
(mean)

Anthrax 
(mean)

Smallpox 
(mean)

Norfolk, 20% 2.30% 4.79% 2.72% 4.65% 2.82%

Pittsburgh, 20% 2.30% 4.79% 2.77% 5.79% 3.99%

San Diego, 20% 2.30% 4.79% 3.26% 4.99% 5.78%

Veridian 
Norfolk, 20%

2.30% 4.79% 3.16% 5.50% 3.81%
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Empirical Doctor Visits Bound

• Data from CDC Advance Data, Vital & Health Statistics, No. 328, 
2002 

• Table 1 of the report shows MSAs (metropolitan areas) have 294.6 
visits per 100 persons per year

• The lower bound is based on major disease categories, while the 
higher bound is based on all disease categories in the simulation

• Table 11 of the report gives 14.1% of all the causes of visits to fall 
within major disease categories of infectious & respiratory diseases, 
and 54.7% for all disease categories in the simulation

• This gives us the lower bound of 0.415 visits per person per year 
and the higher bound of 1.611 visits per person per year
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Doctor Visit (visit per person per 
year)

City, percent of 
simulated 
population

Empirical 
lower 
bound

Empirical 
higher 
bound

No Attack 
(mean)

Anthrax 
(mean)

Smallpox 
(mean)

Norfolk, 20% 0.415 1.611 0.499 0.476 0.499

Pittsburgh, 20% 0.415 1.611 0.493 0.485 0.573

San Diego, 20% 0.415 1.611 0.726 0.753 0.796

Veridian 
Norfolk, 20%

0.415 1.611 0.707 0.821 0.738
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Empirical ER Visits Bound

• Data from CDC Advance Data, Vital & Health Statistics, No. 326, 
2002

• Table 1 of the report shows MSAs have 37.6 visits per 100 persons 
per year

• The lower bound is based on major disease categories, the higher 
bound on all disease categories in the simulation

• Table 7 in the report gives us 14.8% of all causes tp fall within 
major disease categories of infectious & respiratory illness, and 
77.7% of all disease categories of the 62 disease present in the 
simulation

• So the lower bound is 0.056 visits per person per year, the higher 
bound 0.232 visits per person per year
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ER Visit (visit per person per year)

City, percent of 
simulated 
population

Empirical 
lower 
bound

Empirical 
higher 
bound

No Attack 
(mean)

Anthrax 
(mean)

Smallpox 
(mean)

Norfolk, 20% 0.056 0.232 0.112 0.108 0.112

Pittsburgh, 20% 0.056 0.232 0.109 0.106 0.129

San Diego, 20% 0.056 0.232 0.149 0.159 0.188

Veridian Norfolk, 
20%

0.056 0.232 0.161 0.187 0.168
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BioWar Validation with Smallpox SIR 
in Details
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Docking BioWar with the SIR 
model

• Our method
– Aligning the complex BioWar model with the SIR model

• The Susceptible-Infected-Recovered (SIR) model
– Widely used to model the spread of a contagious disease in 

epidemiology literature
– A simpler and well-understood model

• Our goal
– Validate BioWar
– Demonstrate that it is at least able to produce fairly similar 

results to the accepted standard epidemiological model
– Obtain a sense of validity needed to develop the new model 

• Challenges
– Their radically different structures and assumptions

The two models
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Disease stages of smallpox infection

• Incubation
– No symptoms, around 12-14 days

• Prodrome (early-symptomatic)
– Sometimes contagious
– Non-specific symptoms

• High fever, head and body aches, and possibly vomiting 
– around 2-4 days

• Fulminant (late-symptomatic) 
– Contagious
– Specific symptoms

• Early rash (about 4 days)
• Pustular rash (about 5 days)
• Pustules and scabs (about 5 days)
• Resolving scabs (about 6 days)

The two models
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The two models of smallpox 
outbreaks

Susceptible (S)
Incubation (I)

Prodromal (P)

Contagious (C)

Quarantined (Q)

Died (D)

Recovered (R)a1 a2

S I CP Q

D

Ra1

a2

SIR

BioWar

The two models
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Qualitative differences

• Population assumptions 
– heterogeneous vs homogeneous 

• Disease model design 
– Micro vs macro 

• Computational process 
– BioWar needs higher computational power than SIR

• Initialization 
– Individual level info. vs population level info.

• Parameterization 
– Parameterized attack scenarios vs parameterized infection info.

The two models
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The processes of model alignment

Run SIR model

death rates, average 
disease durations

disease 
durations

Test that the disease durations 
from BioWar are gamma 

distributed

Determine mean, standard deviation, 
and probability distribution for 

durations of each disease stage

disease durations

probability 
distributions

Test that the equality exists between 
BioWar and from SIR in the patterns 
of infections and mortality over time

initial infections, reproductive rate (R)

Develop simulation scenarios

cumulative infections, cumulative deaths

death rates, 
infectivity

Run BioWar model

Parameter Alignment

Simulations

Results Comparison

Review literature for disease 
durations, death rate, and 

infectivity in historical cases

Run SIR model

death rates, average 
disease durations

disease 
durations

Test that the disease durations 
from BioWar are gamma 

distributed

Determine mean, standard deviation, 
and probability distribution for 

durations of each disease stage

disease durations

probability 
distributions

Test that the equality exists between 
BioWar and from SIR in the patterns 
of infections and mortality over time

initial infections, reproductive rate (R)

Develop simulation scenarios

cumulative infections, cumulative deaths

death rates, 
infectivity

Run BioWar model

Parameter Alignment

Simulations

Results Comparison

Review literature for disease 
durations, death rate, and 

infectivity in historical cases

The Process of Docking
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Parameter alignment

• Disease stage durations
– The duration that a infected person stay in a certain disease 

stage
– BioWar: a gamma distributed probability functions for each of 

the disease stage
– SIR: the ratio in transition probability moving from one stage to 

another is set to the mean value of the probability function
• Reproduction rate

– The number of  secondary cases infected by one infected person
– BioWar: generate the number of infected and reproduction rate 

based given an attack scenario
– SIR: use the number of infected and the reproduction rate 

generated from BioWar  as input parameters

The Process of Docking
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Simulation assumptions

• Washington, DC area, scaled down to 10% of its original size 
• The total population after scaling is about 55,900
• Assume that the attack goes undetected 
• Assume that no public health responses or warnings occur 

after the attack

Simulations
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Attack scenarios

Scenarios Residual immunity
(% of total 
population)

Fresh vaccination 
(% of total 
population)

Is infected 
population 
quarantined?

base 0% 0% no

vaccination 46% 50% no

quarantine 46% 0% yes (on average, 2 
day after the onset 
of rash)

Simulations
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Stage durations are proportional to the 
gamma distributions
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Cumulative infections from the 
two models are comparable
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Mortality from the two models are 
comparable
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Discussions
• On a gross level the two models give approximately the same 

results but subtle differences exist because of the differences in 
mixing assumptions

• The differences were most evident in the scenarios involving 
vaccination and quarantine
– the agent-level complexity required for such scenarios is easily 

accommodated by BioWar, but not by SIR

• BioWar provides a way to manage these model parameters in order 
to represent the heterogeneous properties of individuals
– The emergent properties of agent-based models which cannot 

be generated from the SIR model 
– E.g., the reproductive rate is actually partly the result of 

interactions between individuals and these interactions

Conclusions
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Contributions

• Develop a methodology to partially validate a complex 
agent-based model
– We provided a method to align a multi-agent model of 

weaponized biological attacks, BioWar, with the classical 
susceptible-infected-recovered (SIR) model

• Identify the differences in model inputs and model 
assumptions of smallpox simulations 
– It is important for policy makers to understand the differences 

and similarities between agent-based models and the SIR model 
before making decisions based on any one model  

Conclusions
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• Also referred to as “docking”

• The comparison of two computational models to 
see if they can produce equivalent results

• Uncover the differences and similarities between 
models

• Reveal the relationships between the different 
models’ parameters, structures, and assumptions

Model Alignment
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The revised SIR model for 
comparison

SCpsc 

Pp pc 

Qpqr )1(  

Susceptible (S)

Incubation (I)

Prodromal (P)

Contagious (C)

Quarantined (Q)Recovery (R) Death (D)
Qpqd 

Ipip 

Cpip 

Being infected

Show first symptom

Show specific symptom

Infection discovered/quarantined

recovered die
The two models
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Anthrax: BioWar vs. IPF based on Time to 
Death
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Smallpox Incubation
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Smallpox Death: SIR vs. BioWar
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Smallpox Infections: SIR vs. 
BioWar
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Limitations
• Actual transmission rates during pandemic flu are unknown.  By definition 

these will be more than normal influenza strain but we don't know by how 
much.

• The model does not include behavior such as panic.  We don't know how 
people's behavior will change and that may affect transmission and spread 
of disease.

• Since we don't know what strain will lead to the pandemic, we don't know 
the effects of vaccination and anti-virals

• The population is assumed to be static.  Population influx and emigration 
are not included.

• The interplay between co-morbidity and influenza may not be clear during a 
pandemic, but will affect mortality rates, hospitalization, health care 
resource use.  Mortality and transmission rates will be different but are 
unknown.

• There may be secondary spreads within pandemic.

• Note: these are limitations to most if not all pandemic models.
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The Need for Automated 
Validation
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Why is There The Need for Validation 
Automation?

• To effectively use simulations, human analysts require to 
have justifiable and measurable confidence in them

• Real-time revalidation of BioWar to changing real world 
situations is especially important

• Validation is difficult to do manually due to model 
complexity and variable interactions

• Scaling BioWar up to take in more models – local models 
and diverse secondary data streams – would increase 
the code size and the complexity of validation

• Simulation assumptions are numerous and often implicit. 
• Knowledge underlying simulations is NOT usually 

codified and operable. Codified knowledge is critical.
Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMUOctober 2016 103

Manual Parametric Study 
Experience

• Parametric study of 3-4 parameters for BioWar which 
has hundreds of semi-constrained parameters

• Lessons learned:
Intelligent analysis and response techniques are 

needed to optimize the search in parameter space
Automated tools to create and execute parametric 

studies (called virtual experiments) are needed
• What matters is elucidating cause-and-effect 

relationships using simulations, not just patterns or 
statistical associations.
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WIZER Description

• WIZER (What-If AnalyZER):
– a coupled inference and simulation engine 
– that can deal with high dimensional, symbolic, stochastic, 

emergent, and dynamic nature of complex multi-agent systems 
– by performing knowledge-intensive data-driven search steps via 

an inference engine constrained by simulation
– and by explaining the reasoning behind inferences using both 

the simulation and the inference engine

• WIZER views simulation systems as knowledge systems
• WIZER controls the simulator and also the design and 

execution of experiments based on the Scientific Method
• It exploits the knowledge intensity of social systems to 

bound search through model space
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WIZER Proposed Capabilities

• WIZER provides automation of validation and model-
improvement

• Human analyst can see his/her domain knowledge in 
action in simulations

• WIZER would perform inferences and narrow search 
through parameter and meta-model space, cutting down 
the analysis time

• Making simulation assumptions explicit and operable, 
facilitating multiple experts collaboration and objective 
assessment of expert opinions
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Problem Focus

Modeling Simulation Inference
and Reasoning

Validation, Model 
Improvement,
Simulation & Experiment
Control

Automation

BioWar WIZER
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Simulation and Knowledge 
Synergy

Simulations
Human Expert

Knowledge
Databases

Inference Engine and Simulation Control
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WIZER: Automated Validation

Data 
descriptor

Simulator

Inference 
Engine

Simulation outputs and 
happenings

Empirical data, knowledge, 
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Causal diagram and 
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New parameter values

WIZER

User-defined criteria for 
sufficient validity
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Search Spaces

Knowledge SpaceSimulation/Model Space

Rules
Causations

Parameters
Links
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Assumption-based Causal Model
• WIZER consists of an assumption-based causal model, 

which is a quintuple
– M = (A, V, L, S, U)

• where
• A = variables (propositional symbols) denoting
• assumptions, which are exogenous variables
• V = endogenous variables (propositional symbols) 
• L = logical and/or causal mapping 
• S = simulation (mechanism) or virtual experiment
• U = uncertainty measure, for example, in the
• form of the degrees of support and 

plausibility
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WIZER Inference Engine
The inference engine is based on “if-then” and “causal” rules
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Layers

Virtual Experiments

Rules and Causations

Uncertainty Measures
(e.g., Degrees of Support and Plausibility)
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First WIZER Iteration
• Four runs of 100% Hampton with no attacks.
• WIZER Data Descriptor checks:

– ER registration is above the empirical bound of 0.232 visits per 
person per year

– edregistration-yearly-avg,2.24856,0.056,0.232,above the bounds
– Doctor visit is above the empirical bound of 1.611 visits per 

person per year
– insuranceclaim-yearly-avg,3.16572,0.415,1.611,above the bounds

– School absenteeism is within the empirical bound of absence 
rate (in percentage)

– school-yearly-avg,3.62525,3.04,5.18,within bounds
• WIZER Inference Engine outputs:

– Increase the behavior threshold for going to ER
– Increase the behavior threshold for going to doctor office
– Leave the behavior threshold related to school going behavior
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Conclusion

• WIZER would enable the human analyst to have a better 
confidence interval in a simulation system
– The human analyst can see his/her domain 

knowledge in action in simulations
– Automated validation and explanation

• WIZER would perform inferences and narrow search 
based on knowledge and simulations with empirical 
values, assumptions, rules, and causations, cutting down 
the analysis time

• Making simulation assumptions explicit and operable
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