

Verification
 Two Meanings depending on literature
 Engineering Accuracy of code
 Economics and Management and Operations Management
 Validation and verification used interchangeably
 Verification used in the "philosophical" sense of verified against the real world
Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 4

Consequently
 New Approach Experiment is repeatable Trade repeatability for large quantities of data Results can be replicated Treat results as a probability distribution Data is complete Data fusion and validation by parts Controls are stable and well defined Search for critical or dominant factors Discuss boundary conditions Code is accurate YESI All factors have been modeled No - only the critical subset Decision support not decision making Standard statistical tests can be used Many diverse approaches Forecast not prediction
October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 10

HELE FOR SCHTTENES RESEARCH	А	rchival Match	า
	Training	Prediction Performance in General	Performance During Crisis
	Experiential Operational	2.10(21,0.18) 1.83(48,0.10)	2.38(21,0.11) 1.42(48,0.07)
	Training	Observation Performance in General	Performance During Crisis
	Experiential Operational	1.86(21,0.17) 1.83(48,0.09)	2.38(21,0.13) 1.46(48,0.08)
505 	Note: Number of c	cases and standard errors a	re in parentheses

Carnegie Mellon								
Rea	ality	y: 1	Fear	ns E	Bett	er		
	TE	١M	HIERA	RCHY	SEG	REG	NON	-SEG
	exp	sop	ехр	sop	ехр	sop	exp	sop
Simulated	3.00	1.50	2.35	1.41	2.30	1.40	2.45	1.60
Human	3.00	1.50	2.35	1.46	2.10	1.42	2.64	1.80
	(1)	(4)	(20)	(44)	(10)	(43)	(11)	(5)
CASOS								
October 2016	• • •							

con	nparis	son by	Value	•	
Organization' and Organiza	s Accura tional De	cy by Age sign	nt Model		
Training	Team ocked Di	stributed E	Hierarch Blocked Di	y stributed	
ELM full ELM min SOP full/min Human	88.3% 78.3% 81.7% 50.0%	85.0% 71.7% 85.0% 56.7%	45.0% 40.0% 81.7% 46.7%	50.0% 36.7% 85.0% 55.0%	
October 2016 Co	pyright © Kathl	een M. Carley, CA	SOS, ISR, SCS, CM	IU	46

	Mellon	MIT Re	sults	
	Action	Linear Model	COMIT	Correlation
	Helper Acknowledgm	ent 0.230	0.653	0.8083
	Helper Request	0.498	0.141	0.7488
	Helper Other	0.118	0.323	-0.3306
	Worker Other	0.307	0.368	0.6886
	Worker Question	0.215	0.011	0.4442
	Worker Description	0.086	0.182	0.8148
	Worker Acknowledgm	ent 0.044	0.473	0.2986
CASOS	Helper Help positive correlation mean. models doing well/poorly areas, negative correlatio models tend to have oppo. predictions	0.310 s both in same n means site	0.130	0.8190

negic Mellon
BioWar
 City-level Multi-Agent Dynamic-Social-Network model of population response to loss-of-life events – bio-warfare, epidemiological, chemical High fidelity US Centric 5 cities/ 6 cities Pittsburgh, San Diego, San Francisco, Washington DC, Norfolk/Hampton Roads 62 diseases Weaponized – Smallpox, anthrax, Background – influenza Epidemic – pandemic influenza, SARS Sub-Model for military bases for use in planning, training and assessment of force vulnerability GenCity: Network generation: Census based imputation tool for realistic network generation that is context sensitive
October 2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 55

Illustrative Respiratory and GI Diseases							
Wodered							
Disesse	ICD0Cada	ICD0Name					
	10090000	Agute pesenhan maitia [sommon cold]					
	400	FLUW DEED MANIFEST NEC					
	407.1	PLU W RESP MANIFEST NEC					
	480.2	PARINFLUENZA VIRAL PINEUW					
SEVERE_ACUTE_RESPIRATORY_SYNDROME	480.9	Viral pneumonia, unspecified					
BACTERIAL_PHARYNGITIS_ACUTE_NON_STREPTOCOCCAL_NON_GONC	462	ACUTE PHARYNGITIS					
GRAM_NEGATIVE_PNEUMONIA_NON_KLEBSIELLA	482.1	PSEUDOMONAL PNEUMONIA					
MYCOPLASMA_PNEUMONIA	31	PULMONARY MYCOBACTERIA					
PNEUMOCOCCAL_PNEUMONIA	481	PNEUMOCOCCAL PNEUMONIA					
PULMONARY_LEGIONELLOSIS	482.89	PNEUMONIA OTH SPCF BACT					
STAPHYLOCOCCAL_PNEUMONIA	482.4	STAPHYLOCOCCAL PNEUMONIA					
STREPTOCOCCAL_PHARYNGITIS_ACUTE	34	STREP SORE THROAT					
STREPTOCOCCUS_PYOGENES_PNEUMONIA	482.3	STREPTOCOCCAL PNEUMONIA*					
TUBERCULOSIS_CHRONIC_PULMONARY	11.9	PULMONARY TB NOS*					
TUBERCULOSIS DISSEMINATED	18.9	MILIARY TUBERCULOSIS NOS*					
VARICELLA PNEUMONIA	52.1	VARICELLA PNEUMONITIS					
VIRAL PHARYNGITIS ACUTE NON HERPETIC	79.3	RHINOVIRUS INFECT NOS					
BRONCHIAL ASTHMA	493.1	INT ASTHMA W/O STAT ASTH					
BRONCHITIS CHRONIC SIMPLE	491	SIMPLE CHR BRONCHITIS					
	402	Emphysema NOS					
	20.2	SEPTICEMIC PLAGUE					
	20.2	Bespiraton, anthray					
ANTINAX_INTALATIONAL	22.1	Respiratory antinax					
Gastro-intestinal:							
STAPHYLOCOCCAL GASTROENTERITIS FOOD POISONING	8 4 1	STAPHYLOCOCC ENTERITIS					
BOTHUSM	51	BOTULISM					
CAMPYLOBACTER ENTERITIS	8.43	Intestinal infection due to campylobact					
GIARDIASIS INTESTINAI	7 1	Infection by Giardia Jamblia					
	2						
	5						
VIRAL_GASTROENTERITIS	8.8	VIRAL ENTERITIS NOS					
\odot							
T							
October 2016 Convright © Kathloon M. Carlo	N CASOS 19	SD SCS CMU					

	Mellon		
	Contagious	s Diseases	5
•	Modeled as either attacks or out	oreaks	
	Characteristic	Influenza	Avian Flu
	Start tick	402	402
	End tick	940	940
	Scale	200	20
	Number of desetions	2	1
	Number of The expert'	s don't agree	1
	Low basera	ity analyses	.0001
	High baserate	.0004, .0008	.0012
	Mean baserate	.000496, .000496	.00045
	Low transmisivity	.02, .03	.01
	High transmisivity	.03, .06	.08
CISU)	Mean transmisivity	.033, .033	.063
Ƴๅᢤᡅ	October 2016 Copyright © Kathleen M	. Carley, CASOS, ISR, SCS, C	MU 59

C14=previous "Challenges")								
Туре	C1	C2	C3	C4				
Docking: Comparison against another model								
Generic Pattern: Showing pattern for each generated data stream matches observed patterns								
Characteristic Matching: Showing for each generated output data stream that it has correct seasonal or daily pattern								
Relative Timing of Peaks: Showing time between peaks for dif. data streams matches observed dif.								
Empirical Pattern: Showing pattern for each generated data stream matches empirical pattern – best for input streams								
Within Bounds: Showing for each generated output data stream that the mean of simulated stream falls within min/max of that stream for real data								
First moments: Showing for each generated output data stream that mean is not statistically different than real data – yearly, monthly or daily								

Data Stream	C2	C3	Number
Work absenteeism	Yes	Yes	data stream
School absenteeism	No	Yes	
ER visits	Yes	Yes	mean
Doctor visits	Yes	Yes	
OTC drug purchase	No	Yes	Dailies Mor
Sentinel trace	No	No	
Network distribution	No	Yes	
	·		

rnegie N sofrwis research	School Absenteeism										
	City, percent of simulated population	Empirical lower bound	Empirical higher bound	No Attack (mean)	Anthrax (mean)	Smallpox (mean)					
	Norfolk, 20%	3.04%	5.18%	3.45%	3.75%	3.55%					
	Pittsburgh, 20%	3.04%	5.18%	3.52%	4.67%	4.46%					
	San Diego, 20%	3.04%	5.18%	3.78%	3.81%	5.57%					
	Veridian Norfolk, 20%	3.04%	5.18%	3.73%	4.05%	4.31%					

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CML

er 2016

ASOS

Work Absenteeism					
City, percent of simulated population	Empirical lower bound	Empirical higher bound	No Attack (mean)	Anthrax (mean)	Smallpox (mean)
Norfolk, 20%	2.30%	4.79%	2.72%	4.65%	2.82%
Pittsburgh, 20%	2.30%	4.79%	2.77%	5. 79%	3.99%
San Diego, 20%	2.30%	4.79%	3.26%	4. 99%	5. 78 %
Veridian Norfolk, 20%	2.30%	4.79%	3.16%	5.50%	3.81%

2016 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CML

76

Doctor	[.] Visit	(visit yea	per por r)	erson	per
City, percent of simulated population	Empirical lower bound	Empirical higher bound	No Attack (mean)	Anthrax (mean)	Smallpox (mean)
Norfolk, 20%	0.415	1.611	0.499	0.476	0.499
Pittsburgh, 20%	0.415	1.611	0.493	0.485	0.573
San Diego, 20%	0.415	1.611	0.726	0.753	0.796
Veridian Norfolk, 20%	0.415	1.611	0.707	0.821	0.738

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CM

2016

					,,
City, percent of simulated population	Empirical lower bound	Empirical higher bound	No Attack (mean)	Anthrax (mean)	Smallpox (mean)
Norfolk, 20%	0.056	0.232	0.112	0.108	0.1
Pittsburgh, 20%	0.056	0.232	0.109	0.106	0.1
San Diego, 20%	0.056	0.232	0.149	0.159	0.1
Veridian Norfolk, 20%	0.056	0.232	0.161	0.187	0.10

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CML

2016

Scenarios	Residual immunity (% of total population)	Fresh vaccination (% of total population)	Is infected population quarantined?
base	0%	0%	no
vaccination	46%	50%	no
quarantine	46%	0%	yes (on average, 2 day after the onset of rash)

Why is There The Need for Validation Automation?

- To effectively use simulations, human analysts require to have justifiable and measurable confidence in them
- Real-time revalidation of BioWar to changing real world situations is especially important
- Validation is difficult to do manually due to model complexity and variable interactions
- Scaling BioWar up to take in more models local models and diverse secondary data streams – would increase the code size and the complexity of validation
- Simulation assumptions are numerous and often implicit.
- Knowledge underlying simulations is NOT usually
- codified and operable. Codified knowledge is critical.

onvright © Kathleen M. Carley, CASOS, IS

WIZE	R Inference	Engine
The inference engine is ba	sed on "if-then" and "causal" rule	es
Type of Knowledge	Logical Representation	Meaning
A fact	P1	P1 is true
A rule	$P1 \Rightarrow P2$	P1 implies P2
An uncertain fact	a1 => P1	If assumption a1 is true, then P1 is true
An uncertain rule	a2 => (P1 => P2) or	If assumption a2 is true,
	equivalently $P1 \land a2 \Rightarrow P2$	then P1 implies P2
Type of Knowledge	Logical Representation	Meaning
A fact	P1	P1 is true
A causation	P1 caused P2	P1 caused P2
An uncertain fact	a1 => P1	If assumption a1 is true, then P1 is true
An uncertain causation	$a2 \Longrightarrow (P1 \text{ caused } P2)$	If assumption a2 is true, then P1 caused P2

